Proof-theoretic Harmony

Intensional aspects from a second-order perspective

Luca Tranchini

The talk will focus on harmony, the widely discussed condition that two collections of introduction and of elimination rules for a certain logical constant should satisfy in order to perfectly match each other. Attention will be restricted to rules for propositional connectives in single-conclusion natural deduction format.

I will first argue that a decent criterion of harmony should be (hyper-)intensional, in the sense that taken two equivalent collections of elimination rules (i.e. such that each rule of the first collection is derivable from the rules in the second collection, and vice versa), it may well be that only one of the two collections is in harmony with a given collection of introduction rules.

To precisely formulate an intensional criterion for harmony we propose to modify the (extensional) criterion for harmony recently proposed by Schroeder-Heister (for short SH-harmony) and based on the idea that to any collection of introduction and of elimination rules one can associate a formula of intuitionistic propositional logic with propositional quantification (IPC2). Two collections of introduction and elimination rules for a certain connective are in SH-harmony if the two formulas associated to them are interderivable in IPC2.

An intensional criterion is achieved by imposing on the two formulas a condition stricter than intederivability: isomorphim. We will present the notion of isomorphism (well-known from category theory and computational study of proof systems), stress its significance for proof-theoretic semantics, and finally apply it to clarify the relationship between different ways of generating collections of elimination rules from a given collection of introduction rules known in the literature.