This might interest you: TRUTH 20/20 — an online conference, July 27 – August 6, 2020.

# Author: Rossberg, Marcus

# Logic Group videos and new Logic Supergroup channel

There are number of new recordings of UConn Logic Group colloquium talks on our youtube channel. We are also introducing playlists: for example, for last year’s *“If” by any other name* workshop here, or the recordings of the SEP 2018 conference (which was hosted by the UConn Logic Group) here.

We’re also happy to announce that the Logic Supergroup also has a youtube channel now, where many of the talks that are given in Supergroup online talks series will be available. Four videos are already up!

# Leitgeb talk video online

The recording of Hannes Leitgeb’s talk “On the Logic of Vector Space Models” in the Logic Supergroup online colloquium can now be found on our youtube channel.

# Online Logic Supergroup!

We’re co-organizing a series of online colloquia. Currently ~~six~~ ~~nine~~ ~~fourteen~~ ~~sixteen~~ (I stopped counting) logic groups, programs, centers, institutes, … from around the globe are participating. Go here for details: https://logic.uconn.edu/supergroup/

# Postponed: Abstractionism 2 conference

See here.

# Logical Nihilism

### Éno Agolli

Logical nihilism is the view that there is no logic, or more precisely that no single, universal consequence relation governs natural language reasoning. Here, I present three different arguments for logical nihilism from philosophically palatable premises. The first argument comes from a combination of pluralism with the desideratum that logical consequence should be universal, properly understood. The second argument is a slippery slope argument against monists who support weak logical systems on account of their power to characterize a vast range of true theories. The third argument is a general strategy of generating counterexamples to any inference rule, including purportedly fundamental ones such as disjunction introduction. I close by discussing why a truth-conditional approach to the meaning of the logical connectives not only does not force us to reject such counterexamples but also reveals that right truth-conditions are far more general than the classical ones, at the price of nihilism.

# Ordering Anything: Rejiggering Linnebo’s Ordinal Abstraction

### Eileen Nutting

Øystein Linnebo develops an abstractionist account of the natural numbers as ordinals. On this account, the natural numbers are abstracted from orderings of concrete numerals. But Linnebo also gestures towards an alternative version of his account, on which the restriction to concrete numerals is lifted. I develop something like this alternative account, show how it avoids the Burali-Forti paradox, and show how it guarantees that every number has a successor. Given these and other good features, I claim that Linnebo should prefer this alternative account to the one he develops.

# Contextual analysis, epistemic probabilities, and paradoxes

### Ehtibar Dzhafarov

Contextual analysis deals with systems of random variables. Each random variable within a system is labeled in two ways: by its content (that which the variable measures or responds to) and by its context (conditions under which it is recorded). Dependence of random variables on contexts is classified into (1) direct (causal) cross-influences and (2) purely contextual (non-causal) influences. The two can be conceptually separated from each other and measured in a principled way. The theory has numerous applications in quantum mechanics, and also in such areas as decision making and computer databases. A system of deterministic variables (as a special case of random variables) is always void of purely contextual influences. There are, however, situations when we know that a system is one of a set of deterministic systems, but we cannot know which one. In such situations we can assign epistemic (Bayesian) probabilities to possible deterministic systems, create thereby a system of epistemic random variables, and subject it to contextual analysis. In this way one can treat, in particular, such logical antinomies as the Liar paradox. The simplest systems of epistemic random variables describing the latter have no direct cross-influences and the maximal possible degree of purely contextual influences.

**References:**

Kujala, J.V., Dzhafarov, E.N., & Larsson, J.-A. (2015). Necessary and sufficient conditions for extended noncontextuality in a broad class of quantum mechanical systems. Physical Review Letters 115, 150401 (available as arXiv:1407.2886.).

Dzhafarov, E.N., Cervantes, V.H., Kujla, J.V. (2017). Contextuality in canonical systems of random variables. Philosophical Transactions of the Royal Society A 375: 20160389 (available as arXiv:1703.01252).

Cervantes, V.H., & Dzhafarov, E.N. (2018). Snow Queen is evil and beautiful: Experimental evidence for probabilistic contextuality in human choices. Decision 5, 193-204 (available as arXiv:1711.00418).

# Core type theory

### David Ripley

The Curry-Howard correspondence between intuitionistic logic and the simply-typed lambda calculus forms an important bridge between logical and computational research. This talk develops a variant typed lambda calculus, called “core type theory”, that stands in a similar correspondence to Neil Tennant’s “core logic” (fka “intuitionistic relevant logic”), and shows some basic (and some surprising!) results about this calculus.

# Variable Free Semantics: Putting competition effects where they belong

### Pauline Jacobsen

This talk will have two parts. First I will discuss the approach to semantics making no use of variable names, indices, or assignment functions that I have advocated in a series of papers (see especially Jacobson, 1999, *Linguistics and Philosophy* and 2000, *Natural Language Semantics*, also exposited in Jacobson 2014 textbook *Compositional Semantics*, OUP). There are a number of theoretical and empirical advantages to this approach, which will be just briefly reviewed. To mention the most obvious theoretical advantage: the standard use of variable names and indices in semantics requires meanings to be relativized to assignment functions (assignments of values to the variable names), adding a layer to the semantic machinery. This program eliminates this and treats all meanings as ‘healthy’ model theoretic objects (the meaning of a pronoun, for example, is simply the identity function on individuals, not a function from assignments to individuals). I will then show a new empirical payoff, which concerns competition effects found in ellipsis constructions. These competition effects have gone under the rubric of MaxElide in the linguistics literature. One example centers on the contrast in (1) (on the reading where each candidates hope is about their own success):

- a. Harris is hoping that South Carolina will seal the nomination for her, and Warren is too. (= ‘hoping that it will seal nomination for her (Warren)’)

b. ?*Harris is hoping that South Carolina will seal the nomination for her, and Warren is also hoping that it will. (= ‘seal the nomination for her (Warren)’)

The ‘standard’ wisdom is there is a constraint in the grammar that when material is ‘missing’ (or, ‘elided’) if a bigger constituent can be elided, the bigger ellipsis is required. Why the grammar should contain such a constraint is a total mystery; moreover I and others have argued elsewhere that grammatical competition constraints represent a real complication in the grammar. When there are competition effects they should be located in speakers and hearers (we know that speakers and hearers do compute alternatives – Gricean reasoning, for example, is based on that assumption). Under the variable free account, the missing material in (1a) is of a different type than that in (1b). In (1a), the listener need only supply the property ‘be an *x* such that *x* hopes that SC will seal nomination for *x*‘ which is the meaning of the VP in the first clause. In (1b) what must be supplied is the 2-place relation ‘seal the nomination for’ (note that this is in part because the pronoun her in the first clause is not a variable, and so [[seal the nomination for her]] is the function from an individual *x* to the property of sealing the nomination for *x*, which in turn is the two place relation named above. The competition effect is thus about types not size, and can be given a plausible explanation in terms of communicative pressures. Assuming that meanings of more complex types are more difficult to access than those of simpler types, there is a pressure for speakers to choose the simpler type ellipsis. The type competition story crucially relies on the claim that expressions containing pronouns unbound within them denote functions from individuals to something rather than functions from assignment functions.