Month: March 2024

Relevant Logics as Topical Logics

Andrew Tedder

There is a simple way of reading a structure of topics into the matrix models of a given logic, namely by taking the topics of a given matrix model to be represented by subalgebras of the algebra reduct of the matrix, and then considering assignments of subalgebras to formulas. The resulting topic-enriched matrix models bear suggestive similarities to the two-component frame models developed by Berto et. al. in Topics of Thought. In this talk I’ll show how this reading of topics can be applied to the relevant logic R, and its algebraic characterisation in terms of De Morgan monoids, and indicate how we can, using this machinery and the fact that R satisfies the variable sharing property, read R as a topic-sensitive logic. I’ll then suggest how this approach to modeling topics can be applied to a broader range of logics/classes of matrices, and gesture at some avenues of research.

Meaning in Mathematics: a folkloric account

Ainsley May

Current accounts of meaning in mathematics face a dilemma between triviality and over-specificity. On the one hand, intensional accounts of meaning such as possible world semantics give the trivial result that every mathematical theorem has the same meaning since they are all necessarily true. This triviality is unsatisfactory because we clearly hold some mathematical theorems have different meanings from others. On the other hand, hyperintensional accounts like impossible worlds and structured propositions allow us to distinguish between necessary truths. However, they are so fine-grained that it becomes difficult to uniformly identify the salient semantic features.

In response to this dilemma, I propose an account of mathematical meaning called the folkloric account. On the folkloric account the content of a mathematical theorem is the collection of models, within some reference class of models, that make the theorem true. The appeal of this account is partly that it retains central aspects of world-based accounts, such as evaluation within a model. Yet it overcomes their limitations by incorporating more models to represent different mathematical theories and structures without allowing absolutely every such structure. Here, I introduce the folkloric account and use examples to highlight some of its strengths and identify weaknesses to address in future research.

Is the consistency operator canonical?

James Walsh

It is a well-known empirical phenomenon that natural axiomatic theories are well-ordered by consistency strength. The restriction to natural theories is necessary; using ad-hoc techniques (such as self-reference and Rosser orderings) one can exhibit non-linearity and ill-foundedness in the consistency strength hierarchy. What explains the contrast between natural theories and axiomatic theories in general?

Our approach to this problem is inspired by work on an analogous problem in recursion theory. The natural Turing degrees (0,0′,…,Kleene’s O,…,0#,…) are well-ordered by Turing reducibility, yet the Turing degrees in general are neither linearly ordered nor well-founded, as ad-hoc techniques (such as the priority method) bear out. Martin’s Conjecture, which is still unresolved, is a proposed explanation for this phenomenon. In particular, Martin’s Conjecture specifies a way in which the Turing jump is canonical.

After discussing Martin’s Conjecture, we will formulate analogous proof-theoretic hypotheses according to which the consistency operator is canonical. We will then discuss results—both positive and negative—within this framework. Some of these results were obtained jointly with Antonio Montalbán.