Author: Marcus Rossberg

Intermediate Grammaticality

Sandra Villata

Formal theories of grammar and traditional sentence processing models start from the assumption that the grammar is a system of rules. In such a system, only binary outcomes are generated: a sentence is well-formed if it follows the rules of the grammar and ill-formed otherwise. This dichotomous grammatical system faces a critical challenge, namely accounting for the intermediate/gradient modulations observable in experimental measures (e.g., sentences receive gradient acceptability judgments, speakers report a gradient ability to comprehend sentences that deviate from idealized grammatical forms, and various online sentence processing measures yield gradient effects). This challenge is traditionally met by accounting for gradient effects in terms of extra-grammatical factors (e.g., working memory limitations, reanalysis, semantics), which intervene after the syntactic module generates its output. As a test case, in this talk I will focus on a specific kind of violation that is at the core of the linguistic investigation: islands, a family of encapsulated syntactic domains that seem to prohibit the establishment of syntactic dependencies inside of them (Ross 1967). Islands are interesting because, although most linguistic theories treat them as fully ungrammatical and uninterpretable, I will present experimental evidence revealing gradient patterns of acceptability and evidence that some island violations are interpretable. To account for these gradient data, in this talk I explore the consequences of assuming a more flexible rule-based system, where sentential elements can be coerced, under specific circumstances, to play a role that does not fully fit them. In this system, unlike traditional ones, structure formation is forced even under sub-optimal circumstances, which generates semi-grammatical structures in a continuous grammar.

Divergent potentialism: A modal analysis with an application to choice sequences

Ethan Brauer, Øystein Linnebo, and Stewart Shapiro

Modal logic has recently been used to analyze potential infinity and potentialism more generally. However, this analysis breaks down in cases of divergent possibilities, where the modal logic is weaker than S4.2. This talk has three aims. First, we use the intuitionistic theory of free choice sequences to motivate the need for a modal analysis of divergent potentialism and explain the challenge of connecting the ordinary theory of choice sequences with our modal explication. Then, we use the so-called Beth-Kripke semantics for intuitionistic logic to overcome those challenges. Finally, we apply the resulting modal analysis of divergent potentialism to make choice sequences comprehensible in classical terms.

Computing Perfect Matchings in Graphs

Tyler Markkanen

A matching of a graph is any set of edges in which no two edges share a vertex. Steffens gave a necessary and sufficient condition for countable graphs to have a perfect matching (i.e., a matching that covers all vertices). We analyze the strength of Steffens’ theorem from the viewpoint of computability theory and reverse mathematics. By first restricting to certain kinds of graphs (e.g., graphs with bounded degree and locally finite graphs), we classify some weaker versions of Steffens’ theorem. We then analyze Steffens’ corollary on the existence of maximal matchings, which is critical to his proof of the main theorem. Finally, using methods of Aharoni, Magidor, and Shore, we give a partial result that helps hone in on the computational strength of Steffens’ theorem. Joint with Stephen Flood, Matthew Jura, and Oscar Levin.

What Problem Did Ladd-Franklin (Think She) Solve(d)?

Sara Uckelman

Christine Ladd-Franklin is often hailed as a guiding star in the history of women in logic—not only did she study under C.S. Peirce and was one of the first women to receive a PhD from Johns Hopkins, she also, according to many modern commentators, solved a logical problem which had plagued the field of syllogisms since Aristotle. In this paper, we revisit this claim, posing and answering two distinct questions: Which
logical problem did Ladd-Franklin solve in her thesis, and which problem did she think she solved? We show that in neither case is the answer “a long-standing problem due to Aristotle”. Instead, what
Ladd-Franklin solved was a problem due to Jevons that was first articulated in the 19th century.

Logic Group videos and new Logic Supergroup channel

There are number of new recordings of UConn Logic Group colloquium talks on our youtube channel: www.youtube.com/c/UConnLogicGroup. We are also introducing playlists: for example, for last year’s “If” by any other name workshop here, or the keynote lectures of the SEP 2018 conference (which was hosted by the UConn Logic Group) here.

We’re also happy to announce that the Logic Supergroup also has a youtube channel now, where many of the talks that are given in Supergroup online talks series will be available: www.youtube.com/c/LogicSupergroup/.

Logical Nihilism

Éno Agolli

Logical nihilism is the view that there is no logic, or more precisely that no single, universal consequence relation governs natural language reasoning. Here, I present three different arguments for logical nihilism from philosophically palatable premises. The first argument comes from a combination of pluralism with the desideratum that logical consequence should be universal, properly understood. The second argument is a slippery slope argument against monists who support weak logical systems on account of their power to characterize a vast range of true theories. The third argument is a general strategy of generating counterexamples to any inference rule, including purportedly fundamental ones such as disjunction introduction. I close by discussing why a truth-conditional approach to the meaning of the logical connectives not only does not force us to reject such counterexamples but also reveals that right truth-conditions are far more general than the classical ones, at the price of nihilism.