Residuals and Conjugates in Positive Substructural Logics

Andrew Tedder

While the relations between an operation and its residuals play an essential role in substructural logic, a closely related relation between operations is that of conjugation — so closely related that with Boolean negation, the conjugates and residuals of an operation are interdefinable. In this talk extensions of Positive Non-Associative Lambek Calculus including conjugates (and residuals) of fusion are investigated. Some interesting properties of the conjugates are discussed, a proof system is presented, its adequacy questioned, and some further logics with conjugated operations are pondered.