Minutes of the discussion of the UConn Logic Group meeting
September 19, 2008

provided by Marcus Rossberg <marcus.rossberg@uconn.edu>

The session contained two presentations:

1. Colin on the first-order version of $L_{\mathbb{N}}$
2. Reed on the Effective Completeness Theorem for classical first-order logic

The following points were raised in the discussion:

1. On Colin’s presentation

 a. Colin mentioned in his presentation that there was no axiomatisation the first-order version of $L_{\mathbb{N}}$. Reed asked there was merely none yet, or whether $L_{\mathbb{N}}$ is in fact non-axiomatisable.

 No one knew the answer to this during the discussion, but Marcus later reported that $L_{\mathbb{N}}$ is indeed non-axiomatisable, if the valuations are defined on $[0,1]$, as proved by Scarpellini [2]. (As Colin pointed out last week, logical truth of the propositional fragment is axiomatisable; logical consequence however is not.)

 If the logic is defined on multi-valued algebras instead, however, the resulting consequence relation is axiomatisable; see Hájek [1], §3, for details.

 b. Jc and Reed remarked that Colin’s proof of the third fact on page 4 of his handout established something a lot stronger than the fact stated (the fact is entailed, of course).

 c. Reed wondered whether $L_{\mathbb{N}}$ was compact.

 d. Jc remarked that in $L_{\mathbb{N}}$ you can have non-trivial naïve set theory, where:

 • **naïve set theory** is the (classically inconsistent) set theory that contains an unrestricted set comprehension principle: $\exists \alpha \forall x (x \in \alpha \equiv \varphi(x))$;

 • **triviality** is the paraconsistentists’ analogue of inconsistency, as it were: a theory is trivial iff for every sentence φ (of the relevant language), both φ and $\neg \varphi$ are in the theory. Triviality is classically entailed by inconsistency, owing to the principle *ex falso quodlibet*, that a contradiction entails everything (a.k.a. “explosion”, in some circles…). Where *ex falso quodlibet* is given up (in relevant and paraconsistent logics, for instance) a theory can be inconsistent, i.e. contain both φ and $\neg \varphi$ for some sentence φ, without being trivial.

 Jc also mentioned a proof by White that this system is not only non-trivial, but also consistent. The proof can be found in [3].
2. On Reed’s presentation

 a. Lionel enquire whether the “in addition” was needed in the definition of the decidability of an \mathcal{L}-structure on Reed’s handout, page 2, 10th line from the bottom. It seems that the existence of an algorithm suffices for computability and decidability; or, in different words, the latter entails the former.

 Reed confirmed Lionel’s suspicion.

References

